Generalized Galois Numbers, Inversions, Lattice Paths, Ferrers Diagrams and Limit Theorems

نویسنده

  • Svante Janson
چکیده

Bliem and Kousidis recently considered a family of random variables whose distributions are given by the generalized Galois numbers (after normalization). We give probabilistic interpretations of these random variables, using inversions in random words, random lattice paths and random Ferrers diagrams, and use these to give new proofs of limit theorems as well as some further limit results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorics of Arc Diagrams, Ferrers Fillings, Young Tableaux and Lattice Paths

Several recent works have explored the deep structure between arc diagrams, their nestings and crossings, and several other combinatorial objects including permutations, graphs, lattice paths, and walks in the Cartesian plane. This thesis inspects a range of related combinatorial objects that can be represented by arc diagrams, relationships between them, and their connection to nestings and cr...

متن کامل

Volume Laws for Boxed Plane Partitions and Area Laws for Ferrers Diagrams

We asymptotically analyse the volume-random variables of general, symmetric and cyclically symmetric plane partitions fitting inside a box. We consider the respective symmetry class equipped with the uniform distribution. We also prove area limit laws for two ensembles of Ferrers diagrams. Most of the limit laws are Gaussian.

متن کامل

The Half-Perimeter Generating Function of Gated and Wicketed Ferrers Diagrams

We show that the half-perimeter generating functions for the number of wicketed and gated Ferrers diagrams is algebraic. Furthermore, the generating function of the wicketed Ferrers diagrams is closely related to the generating function of the Catalan numbers. The methodology of the experimentation, as well as the proof, is the umbral transfer matrix method.

متن کامل

A Simple Proof of a Conjecture of Simion

Simion had a unimodality conjecture concerning the number of lattice paths in a rectangular grid with the Ferrers diagram of a partition removed. Hildebrand recently showed the stronger result that these numbers are log concave. Here we present a simple proof of Hildebrand’s result.

متن کامل

S ep 2 00 8 A Simple Proof of a Conjecture of Simion ∗

Simion had a unimodality conjecture concerning the number of lattice paths in a rectangular grid with the Ferrers diagram of a partition removed. Hildebrand recently showed the stronger result that these numbers are log concave. Here we present a simple proof of Hildebrand’s result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2012